Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

نویسندگان

  • Scott C. Davis
  • Kristian Sexton
  • Michael Shane Chapman
  • Edward Maytin
  • Tayyaba Hasan
  • Brian W. Pogue
چکیده

Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED’s to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Silver Nanoparticles on Improving the Efficacy of 5-Aminolevulinic Acid-Induced Photodynamic Therapy

Introduction: The most important limitation of 5-aminolevulinic acid (5-ALA)-induced photodynamic therapy (PDT) is the efficacy of the cells in converting 5-ALA to protoporphyrin IX. The present study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) with the photosensitivity at the surface plasmon resonance wavelength on 5-ALA-mediated PDT. Material and Methods: First of a...

متن کامل

Angioma serpiginosum successfully treated by a single session of intense pulsed light therapy

Angioma serpiginosum (AS) is a nevoid capillary malformation developed congenitally or thereafter. The AS stops growing after puberty and may remain persistent throughout life. The pulsed dye laser (PDL) and KTP are used to treat the AS usually after several sessions. We treated a patient with AS with only one session of intense pulsed light (IPL) therapy. A 40-year-old lady with Fitzpatrick sk...

متن کامل

Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...

متن کامل

Efficacy of the intense pulsed light source on unwanted hairs

Background: The need for a rapid, non-invasive method for unwanted hair removal has led to the development of various light sources for this purpose. Objective: To evaluate the efficacy of Intense Pulsed Light Source (IPLS) on unwanted hairs. Patients and Methods: In this open, uncontrolled clinical trial, 77 different anatomical areas in 34 referred patients to “Novin Didegan Clinic” in Tehran...

متن کامل

A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging.

BACKGROUND Photodynamic therapy (PDT) offers the potential for enhanced treatment of nonmelanoma skin cancer (NMSC) with minimal scarring. Yet, PDT has not achieved consistent long term effectiveness to gain widespread clinical acceptance for treatment of skin cancer. Therapeutic response varies between practitioners, patients and lesions. One important contributing factor is the absence of qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015